TS//RELIDO/UNCLASSIFIED MIX

20250602

252025.153 Life System Intelligence Hack to Organization Ownership

252025.153 Life System Intelligence Hack to Organization Ownership


EM frequency ownership

Command and Control

single to multicellular system



single cell to multicellular membrane control

brain-mind control

Human:
Gamma (greater than 30Hz)
BETA (13-30Hz)
ALPHA (8-12 Hz)
THETA (4-8 Hz)
DELTA (less than 4 Hz)

A ubiquitous spectrolaminar motif of local field potential power across the primate cortex https://www.nature.com/articles/s41593-023-01554-7

Radio-Frequency Rectification on Membrane
Bound Pores https://arxiv.org/pdf/0709.1896 "These values translate via the average current <I> =
<n> e / τd = <n> e f to frequencies in the range of 1 MHz to 1 GHz"


Application method:

Electromagnetic Frequency Worldwide Ownership

Type of RadiationFrequency Range (Hz)Wavelength Range
gamma-rays1020 - 1024< 10-12 m
x-rays1017 - 10201 nm - 1 pm
ultraviolet1015 - 1017400 nm - 1 nm
visible4 - 7.5*1014750 nm - 400 nm
near-infrared1*1014 - 4*10142.5 μm - 750 nm
infrared1013 - 101425 μm - 2.5 μm
microwaves3*1011 - 10131 mm - 25 μm
radio waves< 3*1011> 1 mm





Review of Microwave Weapons in the Cold War: The Moscow Embassy Study https://www.arpansa.gov.au/review-microwave-weapons-cold-war-moscow-embassy-study



...



Laser Surveillance Information Collection

Laser Surveillance Information Collection


Laser Doppler vibrometry (LDV)

time signal differential


https://digital.wpi.edu/pdfviewer/sb3979712

Human speech
"Laser eavesdropping relies on vibrations created by the soundwaves from speech, or sound in general. The sound waves cause hard objects in a room, such as coffee cups or windows to vibrate a tiny amount. When you point a laser at one of these objects, the vibrations from that object cause the laser’s reflected beam to modulate or jump about. This modulated reflected beam is picked up and converted from light back to an audio sound wave. It can then be listened to and recorded." -fcdoservices.gov.uk

Machine operation surveillance, data capture


"Laser eavesdropping is a sophisticated technique typically used by individuals from hostile states to covertly gather information. It involves the remote use of an invisible laser to listen into conversations being held inside a target location. It’s an expensive and very technical form of eavesdropping attack, but it’s preferred by some because it can be conducted from a remote location, therefore reducing the chances of being detected."

70s "A laser beam provided guidance and acted as the data link for the audio sensor payload."


Recommendations

"Laser eavesdropping can intercept a conversation in any room with a window, and generally, it’s difficult to completely secure rooms with windows, so having a good security culture can protect you and your organization.

Our experts in counter-eavesdropping at UK NACE advise taking the following measures to help reduce the risk of a laser eavesdropping attack:

Install heavy blinds or curtains over windows which could help prevent a laser beam reaching a target.

Make sure, where possible, offices are not overlooked or in the line of sight of other buildings, especially high-rise apartments, which provide threat actors with a platform to conduct a laser attack.

Ensure a clear desk policy to reduce the number of objects in a room that would be easy for a laser to pick up sound wave vibrations from." -fcdoservices.gov.uk

.............
Other:

-Drone swarm and satellite array for signal amplification

-Silent propulsion stealth drone application

https://www.ll.mit.edu/news/laser-can-deliver-messages-directly-your-ear-across-room https://opg.optica.org/ol/abstract.cfm?uri=ol-44-3-622 Photoacoustic communications: delivering audible signals via absorption of light by atmospheric H2O

#CIA #FCDO


{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "c21745e6",
   "metadata": {},
   "source": [
    "Project Number: BYK-BUG2\n",
    "\n",
    "Laser Audio Surveillance Device\n",
    "submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE\n",
    "by Vincent Amendolare Wade Sarraf on December 19, 2005\n",
    "Approved: Professor Brian King, Advisor \n",
    "\n",
    "https://digital.wpi.edu/pdfviewer/sb3979712"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ba0bd0e0",
   "metadata": {},
   "source": [
    "7.3dsPIC Code"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab2a1f77",
   "metadata": {},
   "outputs": [],
   "source": [
    "#include \"p30f4013.h\"    //support for the dsPIC\n",
    "\n",
    "externvoid square_wave(void); //assembly language squarewave\n",
    "int main(void) // begin \n",
    "{\n",
    "\n",
    "ADC_Init(); //initialize the ADC \n",
    "TRISC=0; //set PORTC to all outputs\n",
    "TRISD=0; //set PORTD to all outputs\n",
    "TRISF=0; //set PORTF to all outputs \n",
    "PORTF=47;   // initialize PORTF \n",
    "PORTD=2; //sets the reset signal to high meaning no reset\n",
    "\n",
    "while(1) //infinite loop\n",
    "{\n",
    "\n",
    "    square_wave(); //call the assembly language squarewave \n",
    "function \n",
    "\n",
    "} // while loop \n",
    "} // end main"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a8045a3",
   "metadata": {},
   "outputs": [],
   "source": [
    "#include \"p30f4013.h\" \n",
    "\n",
    "         .text\n",
    "\n",
    "         .global _square_wave\n",
    "_square_wave:\n",
    "\n",
    "main:\n",
    "\n",
    "nop   ;actually 36 nop on either side but it would not fit\n",
    "nop   ;in report that way\n",
    "nop \n",
    "NEG PORTF\n",
    "nop\n",
    "nop\n",
    "nop\n",
    "\n",
    "goto main\n",
    "\n",
    "return\n",
    " .end "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e327c946",
   "metadata": {},
   "outputs": [],
   "source": [
    "#include \"p30f4013.h\" // support for dsPIC\n",
    "/*Declarations*/\n",
    "\n",
    "int i=0; // index\n",
    "volatileunsignedint * iPtr;  //pointer for ADC\n",
    "\n",
    "/*Dynamic Interupt Adjust Variables*/\n",
    "int high_time=0;\n",
    "int low_time=0;\n",
    "int delay=0;\n",
    "\n",
    "/*Smooth Adjust Variables*/\n",
    "int past = 0; \n",
    "int present = 0;\n",
    "int smooth = 0; \n",
    "\n",
    "//Prototypes \n",
    "\n",
    "void ADC_Init(void); \n",
    "void __attribute__((__interrupt__)) _ADCInterrupt(void);\n",
    "\n",
    "void ADC_Init(void)\n",
    "{\n",
    "// Configure Analog Pins\n",
    "\n",
    "     TRISB = 1; // sets 1st pin in PORTB(AN0) to an input\n",
    "     ADPCFG = 0xFFFB; /*sets AN2 to an analog input,\n",
    "                           the      rest      are      digital      I/O\n",
    "\n",
    "// Selecting Input to S/H Channels \n",
    "\n",
    "    ADCHS = 2;   // 0 set AN0 as input to CH0\n",
    "                        // CH0+ input is AN2.\n",
    "                        // CHO- input is VREFL (AVss)\n",
    "    ADCSSL = 0;  // no inputs are scanned\n",
    "\n",
    "// Set PWM Frequency \n",
    "\n",
    "      TMR1 = 0x0000;     // timer 1 default settings\n",
    "      PR1 = 2105;        // PWM period \n",
    "      T1CON = 0x8000;  // turn on timer 1\n",
    "\n",
    "// Set PWM Duty Cycle Timer\n",
    "\n",
    "      TMR2 = 0x0000;     // timer 2 default settings \n",
    "      PR2 = 0x000;       // Duty Cycle \n",
    "      T2CON = 0x8000;  // turn on timer 2 \n",
    "\n",
    "// Select ADC Conversion Clock\n",
    "\n",
    "      TMR3 = 0x0000;     // timer 3 default settings\n",
    "      PR3 = 8192;        // Sampling Period\n",
    "      T3CON = 0x8000;  // turn on timer 3 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74f26e1c",
   "metadata": {},
   "outputs": [],
   "source": [
    "// Select ADC Conversion Trigger \n",
    "\n",
    "      ADCON1bits.ADSIDL = 0; // continue operation in idle mode\n",
    "      ADCON1bits.FORM = 0; // sets output of ADC as int\n",
    "      ADCON1bits.SSRC = 2; // timer 3 is sample/convert trigger\n",
    "      ADCON1bits.ASAM = 1; // sample once convert is done\n",
    "      ADCON2bits.VCFG = 3;  // AVdd and AVss are voltage \n",
    "      ADCON2bits.CSCNA = 0; // Do not scan input selections \n",
    "      ADCON2bits.SMPI = 0; // 1 sample per interrupt \n",
    "      CON2bits.BUFM      =      0;      // 16 word buffers\n",
    "      ADCON2bits.ALTS = 0; // Use A inputs for multiplexing\n",
    "      ADCON3bits.ADRC = 0; // sets clock as system derived\n",
    "      ADCON3bits.ADCS = 32; // adc conversion clock select bit \n",
    "\n",
    "// turn ADC on\n",
    "\n",
    "      ADCON1bits.ADON = 1;\n",
    "\n",
    "// Enable Interrupts\n",
    "\n",
    "      IFS0bits.ADIF = 0;       // clear conversion interrupt\n",
    "      IEC0bits.ADIE = 1;       // enable ADC interrupt \n",
    "      IFS0bits.T3IF = 0;       // clear timer 3 interrupt\n",
    "      IEC0bits.T3IE = 0;       // enable timer 3 interrupt\n",
    "      IFS0bits.T2IF = 0;       // clear timer 2 interrupt \n",
    "      IEC0bits.T2IE = 1;       // enable timer 2 interrupt\n",
    "      IFS0bits.T1IF = 0;       // clear timer 1 interrupt\n",
    "      IEC0bits.T1IE = 1;       // enable timer 1 interrupt\n",
    "\n",
    "      return;\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "46ca458a",
   "metadata": {},
   "outputs": [],
   "source": [
    "void __attribute__((__interrupt__)) _ADCInterrupt(void)\n",
    "{\n",
    "      PR2 += smooth;     // 4th addition of the smooth factor \n",
    "      PORTC = 0x2FFF;    // set PWM high\n",
    "      ORTF=47;                  // inverted clock high\n",
    "      TMR3 = 0;          // resets Timer 3\n",
    "      IFS0bits.T3IF = 0; // clear interrupt flag\n",
    "      PORTD = 0;         // begin reset signal\n",
    "      past = present;    // save last pulse width \n",
    "      iPtr = &ADCBUF0; // set pointer to ADCBUF0\n",
    "      present = (*iPtr>>1);  // load new duty cycle into PWM\n",
    "\n",
    "      smooth = (present-past)>>2; //calculate new smooth factor \n",
    "\n",
    "/* to accommodate delays from branching executing\n",
    "instructions the floor value is 36 but we still\n",
    "need to represent the values between 1 and 36*/ \n",
    "\n",
    "     if(PR2<36){PR2+=36;}\n",
    "\n",
    "/* past values for pwm high time are between 36\n",
    "and 2048 this scales down the high time to a max of 256*/\n",
    "\n",
    "      high_time = past>>3;\n",
    "      low_time = 256-high_time;\n",
    "\n",
    "/* this for loop is timed up to last as long as the next\n",
    "pulse's high time would if there were no interrupt\n",
    "wasting time is avoided by making continuing to modulate port F */\n",
    "      for(i=0; i<high_time; i++){\n",
    "            PORTF=-PORTF;}\n",
    "\n",
    "      PORTC = 0; // set PWM low after appropriate delay\n",
    "\n",
    "/* this delay makes the Interrupt last as long\n",
    "as any of other PWM high/low periods*/\n",
    "\n",
    "      for(i=0; i<low_time; i++){\n",
    "            ORTF=-PORTF;}            // modulate port F\n",
    "            PORTD=2;                  // end reset signal\n",
    "            IEC0bits.ADIE = 1; // enable ADC interrupt\n",
    "            IFS0bits.ADIF = 0; // Clear the A/D Interrupt flag\n",
    "            TMR1=TMR3+4;            // sync up timers\n",
    "\n",
    "            delay=1;                  // delays for timing\n",
    "            delay=1; \n",
    "            delay++; \n",
    "            PORTC=0x2FFF;            // set PWM high \n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "69268f50",
   "metadata": {},
   "outputs": [],
   "source": [
    "void __attribute__((__interrupt__, __shadow__)) _T2Interrupt(void)\n",
    "{\n",
    "                PORTC      =      0;                        // Set PWM Low \n",
    "                IFS0bits.T2IF = 0;       //clear interrupt flag\n",
    "                0bits.T2IE      =      0;            // disable timer 2 \n",
    "interrupt\n",
    "}\n",
    "\n",
    "void __attribute__((__interrupt__, __shadow__)) _T1Interrupt(void)\n",
    "{\n",
    "            PORTC      =      0x2FFF;                  // Set PWM High\n",
    "            PR2      +=      smooth;                  // increment pulse width\n",
    "\n",
    "/* trying to sync up timer 2 and 1 time to will not\n",
    "increment during this command which takes two clock periods\n",
    "it also does not increment when t2 interrupt flag\n",
    "is cleared so we need to add 3*/\n",
    "\n",
    "            TMR2      =      TMR1+\n",
    "\n",
    "            if (PR2<36){PR2=36;} // avoid underflow \n",
    "            IFS0bits.T1IF = 0;  // clear interrupt flag \n",
    "            IFS0bits.T2IF      =      0;      // Clear timer 2 interrupt\n",
    "            IEC0bits.T2IE      =      1;      // Enable timer 2 interrupt\n"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

20250601

Mars Perseverance Sol 1519: Left & Right Navigation Camera (Navcam)

 dust devil

Mars Perseverance Sol 1519: Right Navigation Camera (Navcam)

NASA's Mars Perseverance rover acquired this image using its onboard Right Navigation Camera (Navcam). The camera is located high on the rover's mast and aids in driving.

This image was acquired on May 29, 2025 (Sol 1519) at the local mean solar time of 13:22:29.

Image Credit: NASA/JPL-Caltech

Mars Perseverance Sol 1519: Left Navigation Camera (Navcam)

NASA's Mars Perseverance rover acquired this image using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover's mast and aids in driving.

This image was acquired on May 29, 2025 (Sol 1519) at the local mean solar time of 13:22:29.

Image Credit: NASA/JPL-Caltech

20250531

Nanobot logistics

Nanobot logistics

giantmonster.tumblr.com

Injection

Complex internal surgery

Remote control medical nanobots

Surgery display and control mechanism_ https://www.youtube.com/watch?v=ImPchiOgxpg similar to

Devices only manufactured at our secured laboratories 

Nanobots controlled by external computer

Devices only have minimal local intelligence, external computer required

Subscription service required for chronic disease

-removed as waste product when usefulness has ended

 

tumblr.com/headlesssamurai

https://blogbarley.blogspot.com/2025/05/dna-origami-nanobots.html DNA Origami Nanobots

https://blogbarley.blogspot.com/2025/05/dna-origami-combined-with-ca.html Highly functional nanobots

https://arpa-h.gov/

#ARPAH

Mars Perseverance Sol 1520: Left Navigation Camera (Navcam) gif

 dust and wind at bottom right

Mars Perseverance Sol 1520: Left Navigation Camera (Navcam) gif

NASA's Mars Perseverance rover acquired these images using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover's mast and aids in driving.

Images acquired on May 30, 2025 (Sol 1520) at the local mean solar time of 13:16:24 to 13:19:15.

Image Credit: NASA/JPL-Caltech

Assembled by Barley Culiner with GIMP

Sol 4554: Mars Hand Lens Imager (MAHLI) gif

 MAHLI autofocus

Sol 4554: Mars Hand Lens Imager (MAHLI) gif

Images taken by MAHLI onboard NASA's Mars rover Curiosity on Sol 4554 (2025-05-29T09:02:19.000Z) to (2025-05-29T09:02:29.000Z)

Credits: NASA/JPL-Caltech/MSSS

Assembled by Barley Culiner with GIMP

Sol 4554: Mars Hand Lens Imager (MAHLI) gif

Images taken by MAHLI onboard NASA's Mars rover Curiosity on Sol 4554 (2025-05-29T09:05:55.000Z) to (2025-05-29T09:06:07.000Z)

Credits: NASA/JPL-Caltech/MSSS

Assembled by Barley Culiner with GIMP

Sol 4554: Mars Hand Lens Imager (MAHLI) gif

Images taken by MAHLI onboard NASA's Mars rover Curiosity on Sol 4554 (2025-05-29T09:08:43.000Z) to (2025-05-29T09:41:15.000Z)

Credits: NASA/JPL-Caltech/MSSS

Assembled by Barley Culiner with GIMP


fiber cropped and enlarged


20250530

Highly functional nanobots

Highly functional nanobots

Whisk Experiment

DNA Origami combined with Ca. Electrothrix yaqonensis and MEMS for control with ambient EM as a power source. Highly functional nanobots


Generative design-enabled exploration of wireframe DNA origami nanostructures Anthony J Vetturini, Jonathan Cagan, Rebecca E Taylor

mango: A generative design framework intended for wireframe DNA origami:


Electrothrix yaqonensis: A New Species Of Electricity-conducting Organism

Friday night light reading and data collection

Mango functions on Ubuntu 25.04


https://blogbarley.blogspot.com/2025/04/filamentous-bacteria-capable-of.html Filamentous bacteria capable of conducting long-distance electron transfer

https://blogbarley.blogspot.com/2024/02/recent-advances-in-dna-origami.html Recent Advances in DNA Origami-Engineered Nanomaterials and Applications



20250529

DNA Origami Nanobots

DNA Origami Nanobots

Whisk Experiment


structure, wiring, servos, and control


Ca. Electrothrix yaqonensis wiring traces
magnetic servos


mote computation to Electrothrix
wireframe rail, Electrothrix, magneto servo






rough draft data



Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis https://phys.org/news/2025-05-nanoreactors-reaction-efficiency-chemical-synthesis.html servos

Fusion Torus Stack

Fusion Torus Stack

Shell lined with photovoltaic cells https://blogbarley.blogspot.com/2025/05/darpa-sn-25-78.html

Whisk Experiment

Fusion energy: why, how and when

https://www.physics.ox.ac.uk/our-people/fosterm

Lamb Lecture given by Sir Steven Cowley

https://www.physics.ox.ac.uk/events/lamb-public-lecture-2025

-----

pomegranate as design inspiration


stacked, self reinitializing reactions

cascade 

-possible unstoppable reaction (second star for Sol System)

-likely weapon use

pomegranate occult symbolism: fertility, death, and rebirth

Priority Alpha: Simulation required to avoid second star for Sol System


#DARPA

DARPA-SN-25-78

DARPA-SN-25-78

Graphene leaf fractal design, direct energy collection

Projected leaf/vein graphene growth

Synthetic biology grown leaf/vein graphene

direct energy capture

high-power direct energy conversion of nuclear radiation into electricity

Whisk Experiment

high-fluence-resilient, radiation-hardened, charge-carrying materials and techniques that specifically apply to radiovoltaics


proof-of-concept radiovoltaic unit cell that could be scalable to a high-power form factor



https://www.energy.gov/femp/severe-weather-resilience-solar-photovoltaic-system-design


silicon photovoltaics.

Sphere enclosure to capture energy https://blogbarley.blogspot.com/2025/05/fusion-torus-stack.html

----

SolAero Technologies Corp. by Rocket Lab USA, Inc. 

https://rocketlabcorp.com/space-systems/solar/space-solar-cellscics/

Pulled from datasheets:

Radiation hardened design

Solar cell lattice matched  on germanium substrate

ZTJ cell optimized for LEO missions in environments dominated primarily by charged protons

...

Germanium Melting point 1211.40 K ​(938.25 °C, ​1720.85 °F)

Germanium Boiling point 3106 K ​(2833 °C, ​5131 °F)

Carbon Sublimes at 3825°C, 6917°F, 4098 K 

 Silicon Melting point 2,577°F (1,414°C)


Nanowire Solar Cells: A New Radiation Hard PV Technology for Space Applications https://ieeexplore.ieee.org/document/8977473


#DARPA

PSYOP Opportunity: Bio Infection/Tattoo (Antenna) as Object of Beauty

PSYOP Opportunity:

Bio Infection/Tattoo (Antenna) as Object of Beauty

Simulation Only (Not Actual)

Whisk Experiment

https://blogbarley.blogspot.com/2025/05/ca-electrothrix-yaqonensis.html MAIS Program

https://blogbarley.blogspot.com/2025/05/darpasn25-75.html

Bio infection (antenna) as object of beauty 

Tattoo pattern as highly attractive

Infection pattern as highly attractive

-target individuals that require tracking


Social network promotions 


Identification system


Tattoo or Bio infection with metallic components


Individualistic tracking system


-Tattoo artists and medical professionals to install tracking antenna

Another Tattoo (Parody of "Nothin' On You" by B.o.B. featuring Bruno Mars) alyankovic

MAIS Program


#DARPA

Karen Hao on developing AI in the service of people - SRI’s PARC Forum

Karen Hao on developing AI in the service of people - SRI’s PARC Forum

ATMO Robot Transforms in Midair for Ground Mobility Caltech

ATMO (aerially transforming morphobot)

ATMO Robot Transforms in Midair for Ground Mobility Caltech


20250528

NYC

 

AT&T Long Lines Building https://en.wikipedia.org/wiki/33_Thomas_Street


The High Line https://www.nycgovparks.org/parks/the-high-line

Hayden Planetarium https://www.amnh.org/research/hayden-planetarium


Cleopatra's Needle https://en.wikipedia.org/wiki/Cleopatra%27s_Needles

Bethesda Terrace

Bethesda Terrace


A few more NYC photos

Cleopatra's Needle, AT&T Long Lines Building, High Line, Hayden Planetarium, Times Square, and Bethesda Terrace

DNA Origami Algorithm Programmed Configuration

DNA Origami Algorithm Programmed Configuration

Whisk Experiment

data

Silica coating for durability


EM controlled


Algorithm

https://blogbarley.blogspot.com/2025/05/dna-origami-combined-with-ca.html Highly functional nanobots


Synthetic Biology grown structures

Pattern from DNA blueprint

Pattern from ion channel communication (logic gates)


Radiation repair mechanism for DNA structure


-----

https://blogbarley.blogspot.com/2025/03/the-diatom-est-database.html The Diatom EST Database

https://blogbarley.blogspot.com/2025/03/coda-ii-large-bio-mechanical-space.html Coda II: Large Bio-Mechanical Space Structures

https://blogbarley.blogspot.com/2025/04/filamentous-bacteria-capable-of.html Filamentous bacteria capable of conducting long-distance electron transfer


Google Maps, Ocean Base


https://blogbarley.blogspot.com/2025/03/large-bio-mechanical-space-structures.html Large Bio-Mechanical Space Structures 

https://blogbarley.blogspot.com/2024/02/recent-advances-in-dna-origami.html Recent Advances in DNA Origami-Engineered Nanomaterials and Applications

Diversifying DNA origami By Kaitlyn Landram https://www.cmu.edu/bme/News_Events/story_archive/2025/diversifying-dna-origami.html

Generative design-enabled exploration of wireframe DNA origami nanostructures Anthony J Vetturini, Jonathan Cagan, Rebecca E Taylor https://academic.oup.com/nar/article/53/2/gkae1268/7935005

mango: A generative design framework intended for wireframe DNA origami https://github.com/CMU-Integrated-Design-Innovation-Group/Mango

Python Version >= 3.9

- dill==0.3.8
- networkx==3.2.1
- numba==0.59.0
- numpy==1.26.4
- pandas==2.2.0
- plotly==5.18.0
- pymeshfix==0.16.2
- pyvista==0.43.2
- scipy==1.12.0
- trimesh[easy]==4.1.0

252025.148 HPLFI rough hardware design

252025.148 HPLFI rough hardware design

Whisk Experiment

Drone and satellite hardware

https://barleysarthistory.blogspot.com/2024/11/httpswww.html hardware draft

Laser Fault Injection Attack (FIA)

Components

Maser pulses to continuous wave

Laser fault injection rig Fraktal https://youtu.be/4ts3wNRt18g?si=RZYhkw40BxPPDyqN

-----

https://blogbarley.blogspot.com/2025/05/darpasn25-75.html Combine with HPLFI for worldwide manufacturing command and control

https://blogbarley.blogspot.com/2025/05/driip-camsc-calsc-system-brief.html DRIIP CAMSC CALSC System Brief

https://blogbarley.blogspot.com/2025/03/enemy-force-control.html Enemy Force Control through EMF Draft 03

https://blogbarley.blogspot.com/2025/02/photoexcitation-method-incapacitate.html Photoexcitation method: incapacitate atomic weapons remotely

https://github.com/barleyjohn/High-Precision-Laser-Fault-Injection-using-Low-cost-Components software very rough draft

https://blogbarley.blogspot.com/2024/11/high-precision-laser-fault-injection.html HPLFI https://barleysarthistory.blogspot.com/2024/09/unprotected-var-flag-false-func-test.html

-----

Future use with similar hardware

https://blogbarley.blogspot.com/2025/01/capit-ii-red-team-cranial.html


-----

Target acquisition method

https://blogbarley.blogspot.com/2025/05/252025145-hardware-requirements-project.html


#DARPA